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Abstract

Prediction of the plastic deformation behavior of single crystals based on the collective dynamics

of dislocations has been a challenge for computational materials science for a number of years. The

difficulty lies in the inability of existing dislocation dynamics (DD) codes to handle a sufficiently

large number of dislocation lines, to establish a statistically representative model of crystal plastic-

ity. A new massively-parallel DD code is developed that is capable of modeling million-dislocation

systems by employing thousands of processors. We discuss an important ingredient of this code

— the mobility laws dictating the behavior of individual dislocations. They are materials input

for DD simulations and are constructed based on the understanding of dislocation motion at the

atomistic level.
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FIG. 1: Dislocation network represented as a set of “nodes” interconnected by straight segments.

The Burgers vectors are defined on every arm with line direction pointing away from the node. For

example, ~b01 is the Burgers vector of the arm going from node 0 to node 1, and ~b10 is the Burgers

vector of the same arm going in the reverse direction. Consequently there exist sum rules for every

arm, e.g. ~b01 +~b10 = 0, and for every node, e.g. ~b01 +~b02 +~b03 = 0.

1. Introduction

Under a wide range of stress and temperature conditions, the plastic deformation of a

crystal is produced by the motion of dislocation lines through the lattice [1]. This qualitative

picture has been well known for several decades, since the theoretical postulate of the dislo-

cation model and the experimental observation of dislocation microstructures in deformed

materials. However, quantitative prediction of the plastic strength of a single crystal based

on dislocation dynamics (DD) remains a grand challenge to date. The bottleneck seems to

be a technical one. To construct a representative model of crystal plasticity, the dynamics

of a large enough number of dislocations needs to be followed for a long enough time. The

length and time scales it requires remains out of reach of existing simulation codes. A new

massively-parallel DD code is developed that significantly extends the capability of DD sim-

ulations. A general description of this code, DD3d, was given in [2]. In the present paper,

we focus on a specific methodological issue: how to construct mobility laws to describe the

behavior of individual dislocations in a DD simulation.

In DD3d dislocations are represented as a set of “nodes” connected with each other by

straight line segments, as shown in Fig. 1. If a node is connected with n other nodes,
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it is called an n-node. Most of the 2-nodes merely serve as discretization points of the

dislocation line, and are hence called discretization nodes, such as nodes 1, 2 and 3 in Fig. 1.

On the other hand, multi-arm nodes, such as node 0, are “physical”-nodes, as it represents

a physical location where several dislocations meet together. Occasionally a 2-node can also

be a physical node, such as the cusp left on a dislocation after cross slip.

A DD simulation is nothing but the numerical integration of the nodal equation of motion,

which is usually assumed to be over-damped and takes the following form,

~vi ≡
d~ri

dt
= M(~fi) (1)

~fi ≡ −dEel({~ri})
d~ri

(2)

where ~ri, ~vi, ~fi are the position, velocity and force on node i, respectively. Eel is the total

elastic energy of the dislocation network. The computation of nodal forces from Eq. (2)

can be carried out based on analytic formula developed within linear elasticity theory [1–

3]. This is the generic part of DD3d, meaning that it requires only a minimal amount of

material specific inputs such as the elastic constants. Hence the same machinery can be

used to describe different materials without any significant change.

On the other hand, the computation of nodal velocities in response to the driving forces,

as in Eq. (1), is strongly material specific. This is because how dislocations moves is largely

controlled by the atomistic structures and energetics of the dislocation core, which can vary

significantly from one dislocation (or material) to another. Such information is beyond the

realm of linear elasticity theory and can only be obtained from more detailed, atomistic-level

simulations. For example, a Molecular Dynamics (MD) simulation can compute the velocity

of a specific dislocation under a given temperature and stress condition [4]. However to make

such data accessible to DD simulations, they need to be assembled into a “constitutive law”,

which describes the dislocation velocity as a function of temperature, force, and dislocation

characters.

2. Mobility of Discretization Nodes

For simplicity we will neglect the temperature dependence, i.e. we will consider DD

simulations at a fixed temperature. We will also limit our discussion to the mobility of
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FIG. 2: Geometry of vectors in mobility function ~v = M(~f, θ, φ). ~b and ~l are dislocation Burgers

vector and line direction, respectively. The unit vector ~n is the glide plane normal, i.e. ~n ‖ ~l×~b, and

unit vector ~t is parallel to ~l× ~n. Both dislocation velocity ~v and driving force ~f are 2-dimensional

vectors in the tangent (shaded) plane spanned by ~n and ~t (see text).

discretization nodes. Because these nodes are sampling points of a presumably smooth dis-

location line, it suffices to consider the velocity function of differential dislocation segments,

~v = M(~f,~l,~b), where ~f is the force per unit length, ~l is the line direction and ~b is the Burg-

ers vector, as in Fig. 2. Equivalently we can write the velocity function as ~v = M(~f, θ, φ),

where θ and φ describes the orientation of ~l with respect to ~b. Because motion of a line

along itself is unphysical, we restrict ~v and ~f to the 2-dimensional space perpendicular to ~l.

To use this mobility law in a node-based code such as DD3d, we need to translate nodal

information into segment properties ~f and ~l. Consider for example a discretization node i

with two neighbors, 0 and 1. We can approximate the local dislocation line direction near

node i to be ~l = (~r1 − ~r0)/|~r1 − ~r0| and the force per unit length to be ~f = ~fi/L, where

L = |~r1 − ~r0|/2 . (3)

3. A Simple FCC Model

The simplest mobility law is perhaps the one that describes the generic dislocation be-

havior in face-centered-cubic (FCC) metals (e.g. Cu, Al) in low temperatures. Let us call

4



it FCC0. Here we focus on ordinary dislocations with 1
2
[110] type Burgers vectors. The core

of this dislocation splits planarly into two partials on (111) planes, bounding a stacking

fault area. As a result, dislocation motion is entirely confined within the dissociation plane,

except for cross slip events which will be discussed later. Ignoring cross slip, the glide plane

normal vector ~n remains the same as specified in the initial condition. It should be taken

into account as an extra input for the mobility law function, i.e., ~v = M(~f,~l,~b, ~n).

For simplicity, we can assume that dislocation velocity is isotropic within the glide plane.

We may also assume that dislocation velocity is linear to the driving force. This is a rea-

sonable approximation because the Peierls stress (the critical stress below which dislocation

does not move at 0K) in FCC metals is very low. Thus, we arrive at a mobility law described

by a single parameter M ,

~v = M · ~f −M · (~f · ~n) · ~n (4)

The second term ensures that velocity ~v remain orthogonal to glide plane normal ~n. The mo-

bility coefficient M can be determined from a Molecular Dynamics simulation at a constant

stress. In general M can depend on temperature T and function M(T ) can be constructed

from MD simulations at different temperatures [4].

More complex effects can be added to this simple mobility law, to describe disloca-

tion behavior more accurately. For example, M can be angular dependent, such as,

M(θ) = Ms cos2 θ + Me sin2 θ, where Ms and Me are two parameters describing the mo-

bility of screw and edge dislocations respectively. More generally, dislocation velocity is a

non-linear function of driving force, if non-relativist effects are of interest when dislocation

velocity approaches sound velocity, such as under shock conditions. However, the most im-

portant improvement to the above mobility law should be the incorporation of cross slip.

For a dislocation with Burgers vector 1
2
[110], its glide plane could be either (111) or (111).

When the local line direction is parallel to the Burgers vector (screw orientation), there is

a finite probability for the node to flip its glide plane normal from one to the other, i.e., to

cross slip. The cross slip probability Px is a function of local driving force (per unit length)

~f . For the simulation result to be independent from the choice of spatial and temporal dis-

cretization, Px should be proportional to the segment length L the node represents [Eq. (3)]

as well as waiting time ∆t, which can be the simulation time step. Thus Px can be written
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as,

Px = Jx(~f) · S(θ) · L ·∆t (5)

where function S(θ) equals 1 when θ = 0 and quickly goes to 0 as |θ| increases. The cross

slip rate function Jx(~f) can be constructed based on atomistic simulation results.

4. A Simple BCC Model

While the above mobility law makes sense for FCC metals, it would have difficulty if

applied to body-centered-cubic (BCC) metals. Dislocations in BCC metals do not dissociate

into partials as they do in FCC metals. The core of screw dislocations are especially compact

and consequently can move on several planes with equal tendency. Therefore, introducing a

glide plane for screw dislocations would be rather artificial. If the above FCC mobility law

were applied to BCC metals, a very high cross slip probability would have to be used. As

a result a long screw dislocation would very quickly be divided into short segments moving

in different planes. The result would depend on the discretization length and be rather

unphysical. The problem is made more serious by the slow mobility of screw dislocations

compared with non-screw dislocations, which leads to a high percentage of screw segments

in the dislocation population. Therefore, it is very important to have a good account for

screw dislocations in BCC mobility laws.

In this section we derive a simple mobility law, BCC0, which captures the generic behavior

of dislocations in BCC metals. To make progress, let us start from an opposite point of view

to that of FCC0 and assume that screw dislocations can move in all directions with isotropic

mobility. This means that when θ = 0,

~v = Ms · ~f (6)

However, the mobility of non-screw dislocations should still be highly anisotropic. When

~l is not parallel to ~b, a glide plane can be defined with normal vector ~n = (~l × ~b)/|~l × ~b|.

The glide motion within the plane will be much faster than the climb motion out of the

plane. To construct an analytic function that describes ~v(~f, θ, φ) for all line directions, the

typical non-screw behavior should transform smoothly to the screw behavior, as θ goes to

0. Therefore, climb motion for non-screw dislocations, which was completely suppressed in
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FCC0, should be allowed here. The difference between glide and climb mobility of non-screw

dislocations, which can be quite large for large θ, should conveniently vanish as θ goes to 0,

for which the glide plane cannot be defined in the first place.

One way to construct such a mobility law is to consider the physics of dislocations in

near screw orientations (θ ≈ 0) and extrapolate the expression to all orientations. Atomistic

simulations have found that screw dislocation in BCC metals lies along a energetically

favorable direction and experiences very high lattice resistance [5]. The motion of screw

dislocation is typically carried out by thermal-assisted kink-pair nucleation. Once the kinks

are nucleated, they quickly move away for long distances before annihilating with other

kinks. As a result, the screw dislocation moves forward by one lattice distance h.

If the dislocation line direction ~l is slightly tilted away from the Burgers vector ~b, the

dislocation will still assume screw character along most of its length, and account for the

deviation by making kinks with atomic height h. The tilt angle θ is related to the average

separation between kinks D through tan θ = h/D. Because the typical width of this kink

is around 5h, dislocations can be considered as a combination of screw segments and kinks

as long as θ < arctan(1/5) ≈ 10◦. In the following we will construct mobility law functions

using the screw-and-kink model for dislocations within the vicinity of screw orientations. As

an approximation, we will then extrapolate the resulting function to describe mobility of all

dislocations.

Let us first consider the glide motion of dislocations vicinal to screw orientations, and let

ft = ~f · ~t be the glide component of the driving force. The “geometrically necessary” kinks

that accommodate the dislocation’s non-screw character can give dominant contribution to

dislocation velocity at large θ. Let the kink velocity be vk = Mkft, with Mk being the kink

mobility. The dislocation velocity would then be v ≈ vk sin θ = Mkft sin θ. On the other

hand, when θ is very small, v ≈ Msft. A smooth function that connects these two behavior

is,

v = (M2
s + M2

k sin2 θ)1/2ft ≡ Mt(θ)ft (7)

We now consider the climb motion of dislocations vicinal to screw orientations and let

fn = ~f · ~n be the climb component of the driving force. The screw segments cannot tell

the difference from the above situation because their mobility is isotropic. However, in this

case, the kinks will have to climb, which is much more difficult than gliding. The entire

dislocation has to move together, so that the slow moving kinks (in this orientation they are
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usually called jogs) will exert a drag on the screw segments. Let Mj be the climb mobility

of jogs. A similar argument as the above would suggest the following equation,

v = (M−2
s + M−2

j sin2 θ)−1/2fn ≡ Mn(θ)fn (8)

We notice that when θ → 0, Eq. (7) and (8) both converge to Eq. (6), as they should.

Combining these two equations, the mobility function can be written explicitly as,

~v =
[
Mt(θ)~t⊗ ~t + Mn(θ)~n⊗ ~n

]
~f

= Mt(θ)~f − [Mt(θ)−Mn(θ)] (~n · ~f)~n (9)

Notice that ~b×~l = ~n sin θ, we have

~v = Mt(θ)~f − Mt(θ)−Mn(θ)

sin2 θ

[
(~b×~l) · ~f

]
(~b×~l)

≡ Mt(θ)~f − g(θ)
[
(~b×~l) · ~f

]
(~b×~l) (10)

One can show that function g(θ) is a well-defined and continuous function for all θ and

g(0) = 1
2
Ms [(Mk/Ms)

2 + (Ms/Mj)
2]

1/2
.

Eq. (10) specifies the mobility of a generally orientated dislocation segment in BCC metals

by three parameters, Ms, Mk and Mj. Alternatively, we can redefine Mk and Mj by new

variables such as Mg ≡ Mt(θ = 90◦) and Mc ≡ Mn(θ = 90◦),

Mk = (M2
g −M2

s )1/2

Mj = (M−2
c −M−2

s )−1/2

and define the general mobility function in terms of Ms (screw mobility), Mg (edge disloca-

tion glide mobility) and Mc (edge dislocation climb mobility). The physical values for these

three parameters can be obtained from atomistic simulations. Typically Mg � Ms � Mc.

The mobility law as defined in Eq. (10) is numerically well-behaved and provides a simple

model of dislocations in BCC metals. Again, it can be made more complex to describe the

physics of dislocation motion more realistically. A major improvement would be to replace

the completely isotropic mobility of screw dislocations. Screw dislocations assume isotropic

only at relatively high temperatures and this phenomena is called pencil glide. At lower

temperatures, the motion screw dislocations is tilted towards certain crystallographic [such

as (110)] planes. The velocity is not necessarily parallel to the force direction. The mobility
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function can be modified to take the anisotropic effect into account. However, we emphasize

that even in this case, the behavior is still very different from the FCC0 model — the velocity

is solely determined by the driving force ~f and there exists no internal variable such as the

glide plane normal ~n as in FCC0.

A more realistic mobility model would have non-linear force-velocity relationship. In

BCC metals this becomes more important because of the higher lattice resistance for screw

dislocations. The velocity would show non-linear behavior as the force becomes comparable

to the lattice resistance. Eq. (10) also has axial symmetry along the Burgers vector axis. In

reality this symmetry can be broken, for example, when certain crystallographic directions

other than the screw orientation are also energetically favored. For example, atomistic

simulations have found that the mixed-71◦ dislocation, for which ~b = [111] and ~l = [111]

also has a distinctive and favored core structure [3]. Line directions in its vicinity may

also be modeled as a combination of straight 71◦-segments and kinks, similar to the case

of dislocations vicinal to screw orientation. The mobility function taken this into account

would lose the axial symmetry but would always retain certain crystallographic symmetry

of the lattice.

5. Summary

In this paper, we describe how atomistic information on the dislocation core can be used

to construct mobility laws, which serve as inputs for the equation of motion in dislocation

dynamics simulations. This is the approach we take to develop the new massively parallel

DD code DD3d. Although the reason that DD3d can efficiently utilize thousands of processors

in parallel is not due to the mobility laws per se, the successful implementation of the

parallel computation does benefit significantly from a clear separation of the material specific

component — the mobility law, from the remaining generic components of the DD model.

It is interesting to look at the mobility law as a constitutive equation of a single dislocation.

It is provided by atomistic simulations, which takes the interaction between individual atoms

as input and study the collective behavior of many atoms. The task of DD simulation is

to take this as input, study the collective behavior of many dislocations, and eventually

produce a constitutive equation for the plastic strength of a single crystal. It is not difficult
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to imagine a continuum model that takes the single crystal constitutive equation as input,

studies the collective behavior of many crystal grains, and eventually produces a constitutive

equation for a polycrystal. A hierarchical pattern emerges here, where a constitutive equation

repeatedly serves as the link between a lower-scale model and a higher-scale one. This is

one of the several approaches for the intrinsically hard, multi-scale problems and appears

very promising in the pursuit towards understanding crystal plasticity.
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